Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.242
Filtrar
1.
J Nanobiotechnology ; 22(1): 203, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659001

RESUMO

BACKGROUND: Biogeochemical processing of metals including the fabrication of novel nanomaterials from metal contaminated waste streams by microbial cells is an area of intense interest in the environmental sciences. RESULTS: Here we focus on the fate of Ce during the microbial reduction of a suite of Ce-bearing ferrihydrites with between 0.2 and 4.2 mol% Ce. Cerium K-edge X-ray absorption near edge structure (XANES) analyses showed that trivalent and tetravalent cerium co-existed, with a higher proportion of tetravalent cerium observed with increasing Ce-bearing of the ferrihydrite. The subsurface metal-reducing bacterium Geobacter sulfurreducens was used to bioreduce Ce-bearing ferrihydrite, and with 0.2 mol% and 0.5 mol% Ce, an Fe(II)-bearing mineral, magnetite (Fe(II)(III)2O4), formed alongside a small amount of goethite (FeOOH). At higher Ce-doping (1.4 mol% and 4.2 mol%) Fe(III) bioreduction was inhibited and goethite dominated the final products. During microbial Fe(III) reduction Ce was not released to solution, suggesting Ce remained associated with the Fe minerals during redox cycling, even at high Ce loadings. In addition, Fe L2,3 X-ray magnetic circular dichroism (XMCD) analyses suggested that Ce partially incorporated into the Fe(III) crystallographic sites in the magnetite. The use of Ce-bearing biomagnetite prepared in this study was tested for hydrogen fuel cell catalyst applications. Platinum/carbon black electrodes were fabricated, containing 10% biomagnetite with 0.2 mol% Ce in the catalyst. The addition of bioreduced Ce-magnetite improved the electrode durability when compared to a normal Pt/CB catalyst. CONCLUSION: Different concentrations of Ce can inhibit the bioreduction of Fe(III) minerals, resulting in the formation of different bioreduction products. Bioprocessing of Fe-minerals to form Ce-containing magnetite (potentially from waste sources) offers a sustainable route to the production of fuel cell catalysts with improved performance.


Assuntos
Cério , Óxido Ferroso-Férrico , Geobacter , Platina , Cério/química , Cério/metabolismo , Geobacter/metabolismo , Catálise , Óxido Ferroso-Férrico/química , Platina/química , Oxirredução , Compostos Férricos/química , Compostos Férricos/metabolismo
2.
Biosens Bioelectron ; 253: 116161, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457864

RESUMO

We herein describe a novel electrochemical strategy to detect hydrogen peroxide (H2O2) by utilizing the peroxidase-mimicking activity of cerium oxide nanoparticles (CeO2 NP) and reduced graphene oxide (rGO). Particularly, CeO2 NP/rGO nanocomposites were deposited on the commercial electrode by a very convenient and direct electrochemical reduction of graphene oxide. Due to the peroxidase-mimicking activity of CeO2 NP and the outstanding electrochemical properties of reduced graphene oxide, the reduction current of H2O2 was greatly enhanced. Based on this strategy, we reliably determined H2O2 down to 1.67 µM with excellent specificity and further validated its practical capabilities by robustly detecting H2O2 present in heterogeneous human serum samples. We believe that this work could serve as a new facile platform for H2O2 detection.


Assuntos
Técnicas Biossensoriais , Cério , Grafite , Nanocompostos , Humanos , Peróxido de Hidrogênio , Grafite/química , Cério/química , Nanocompostos/química , Peroxidases , Técnicas Eletroquímicas
3.
Sci Rep ; 14(1): 5657, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454018

RESUMO

Cerium oxide nanoparticles (CeO2 NPs, NM-212) are well-known for their catalytic properties and antioxidant potential, and have many applications in various industries, drug delivery, and cosmetic formulations. CeO2 NPs exhibit strong antimicrobial activity and can be used to efficiently remove pathogens from different environments. However, knowledge of the toxicological evaluation of CeO2 NPs is too limited to support their safe use. In this study, CeO2 NPs were orally administered to Sprague Dawley rats for 13 weeks at the doses of 0, 10, 100, and 1000 mg/kg bw/day, followed by a four week recovery period. The hematology values for the absolute and relative reticulocyte counts in male rats treated with 1000 mg/kg bw/day CeO2 NPs were lower than those in control rats. The clinical chemistry values for sodium and chloride in the treated male rat groups (100 and 1000 mg/kg/day) and total protein and calcium in the treated female rat groups (100 mg/kg/day) were higher than those in the control groups. However, these changes were not consistent in both sexes, and no abnormalities were found in the corresponding pathological findings. The results showed no adverse effects on any of the parameters assessed. CeO2 NPs accumulated in the jejunum, colon, and stomach wall of rats administered 1000 mg/kg CeO2 NPs for 90 days. However, these changes were not abnormal in the corresponding histopathological and immunohistochemical examinations. Therefore, 1000 mg/kg bw/day may be considered the "no observed adverse effect level" of CeO2 NPs (NM-212) in male and female SD rats under the present experimental conditions.


Assuntos
Cério , Nanopartículas Metálicas , Nanopartículas , Ratos , Masculino , Feminino , Animais , Ratos Sprague-Dawley , Nanopartículas/química , Cério/toxicidade , Cério/química , Sistemas de Liberação de Medicamentos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química
4.
Luminescence ; 39(3): e4698, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38462505

RESUMO

In this study, cerium ion (Ce3+ )-doped calcium scandium silicate garnet (Ca3 Sc2 Si3 O12 , abbreviated CSSG) phosphors were successfully synthesized using the sol-gel method. The crystal phase, morphology, and photoluminescence properties of the synthesized phosphors were thoroughly investigated. Under excitation by a blue light-emitting diode (LED) chip (450 nm), the CSSG phosphor displayed a wide emission spectrum spanning from green to yellow. Remarkably, the material exhibited exceptional thermal stability, with an emissivity ratio at 150°C to that at 25°C reaching approximately 85%. Additionally, the material showcased impressive optical performance when tested with a blue LED chip, including a color rendering index (CRI) exceeding 90, an R9 value surpassing 50, and a biological impact ratio (M/P) above 0.6. These noteworthy findings underscore the potential applications of CSSG as a white light-converting phosphor, particularly in the realm of human-centered lighting.


Assuntos
Cério , Iluminação , Humanos , Luz , Silicatos/química , Cálcio , Cério/química
5.
J Environ Sci (China) ; 140: 12-23, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331494

RESUMO

The increasing anthropogenic emissions of greenhouse gases (GHG) is encouraging extensive research in CO2 utilisation. Dry reforming of methane (DRM) depicts a viable strategy to convert both CO2 and CH4 into syngas, a worthwhile chemical intermediate. Among the different active phases for DRM, the use of nickel as catalyst is economically favourable, but typically deactivates due to sintering and carbon deposition. The stabilisation of Ni at different loadings in cerium zirconate inorganic complex structures is investigated in this work as strategy to develop robust Ni-based DRM catalysts. XRD and TPR-H2 analyses confirmed the existence of different phases according to the Ni loading in these materials. Besides, superficial Ni is observed as well as the existence of a CeNiO3 perovskite structure. The catalytic activity was tested, proving that 10 wt.% Ni loading is the optimum which maximises conversion. This catalyst was also tested in long-term stability experiments at 600 and 800°C in order to study the potential deactivation issues at two different temperatures. At 600°C, carbon formation is the main cause of catalytic deactivation, whereas a robust stability is shown at 800°C, observing no sintering of the active phase evidencing the success of this strategy rendering a new family of economically appealing CO2 and biogas mixtures upgrading catalysts.


Assuntos
Cério , Níquel , Níquel/química , Dióxido de Carbono/química , Metano/química , Cério/química , Carbono
6.
Chem Pharm Bull (Tokyo) ; 72(2): 220-225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38382975

RESUMO

CeO2 nanoparticles (nanoceria) were proposed as an alternative physical sunscreen agent with antioxidant properties and comparable UV absorption performance. Green synthesis of nanoceria with Ag and Ni dopants resulted in doped nanoceria with lower catalytic activity and biologically-safe characteristics. The doped nanoceria was characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Rancimat Instrument, and UV-Vis Spectrophotometer for SPF (Sun Protection Factor) determination. XRD and TEM analysis showed that nanoceria had been successfully formed in nanoscale-sized with a change in crystallite size due to the crystal defect phenomenon caused by dopant addition. While the Rancimat test and band gap energy analysis were conducted to evaluate the oxidative stability and reactive oxygen species formation, it was confirmed that dopant addition could decrease catalytic activity of material, resulting in Ni-doped Ce with a longer incubation time (11.81 h) than Ag-doped Ce (10.58 h) and non-doped Ce (10.30 h). In-vitro SPF value was measured using the thin layer technique of sunscreen prototype with Virgin Coconut Oil (VCO)-based emulsion, which yielded 10.862 and 5.728 SPF values for 10% Ag-doped Ce and 10% Ni-doped Ce, respectively. The dopant addition of nanoceria could reduce catalytic activity and give a decent in vitro UV-shielding performance test; thus, Ag and Ni-doped nanoceria could be seen as promising candidates for alternative physical sunscreen agents.


Assuntos
Cério , Nanopartículas , Protetores Solares/farmacologia , Espécies Reativas de Oxigênio , Nanopartículas/química , Cério/farmacologia , Cério/química
7.
Food Chem ; 444: 138639, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38330609

RESUMO

With the rapid development of society, food safety to public health has been a topic that cannot be ignored. In recent years, lanthanide-based materials are studied to be potential candidates in the detection of food samples. Cerium (Ce)-based materials (such as Ce ions, CeO2, Ce-metal organic framework (Ce-MOF), etc.) have also attracted more attention in food detection by virtue of colorimetric, fluorescence, sensing, and other methods. This is because the mixed valence of Ce (Ce3+ and Ce4+), the formation of oxygen vacancies, and their optical and electrochemical properties. In this review, Ce-based materials will be introduced and discussed in the field of food detection, including biogenesis, construction, catalytic mechanisms, combination, and applications. In addition, the current challenges and future development trend of these Ce-based materials in food safety detection are also proposed and discussed. Therefore, it is meaningful to explore the Ce-based materials for detection of biomarkers in food samples.


Assuntos
Cério , Elementos da Série dos Lantanídeos , Estruturas Metalorgânicas , Cério/química , Estruturas Metalorgânicas/química , Oxigênio/química , Colorimetria
8.
Chemosphere ; 352: 141418, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340994

RESUMO

In this study, we are reporting for the first time the utilization of Solanum tuberosum tuber-driven, starch-mediated, green-hydrothermally synthesized cerium oxide nanoparticles (G-CeO2 NPs) for the antibacterial activity and photodegradation of cationic (methylene blue, MB) and anionic (methyl orange, MO) dyes separately and in combination, aimed at environmental remediation. The XRD analysis confirms the fluorite structure of G-CeO2 NPs, displaying an average crystallite size of 9.6 nm. Further, XPS confirms the existence of 24% of Ce3+ oxidation states within G-CeO2 NPs. Morphological studies through FE-SEM and TEM reveal that starch-driven OH- ion production leads to a high percentage of active crystal facets, favoring the formation of Ce3+-rich CeO2 NPs. Photocatalytic experiments conducted under UV-A illumination demonstrate the superior degradation performance of G-CeO2 NPs, with MB degradation reaching 93.4% and MO degradation at 77.2% within 90 min. This outstanding catalytic activity is attributed to the mesoporous structure (pore diameter of 5.63 nm) with a narrow band gap, a large surface area (103.38 m2g-1), and reduced charge recombination, as validated by BET, UV-visible, and electrochemical investigations. The identification of photogenerated intermediates is achieved through LCMS, while the mineralization is monitored via total organic carbon analysis. Moreover, the scavenging experiments point towards the involvement of reactive oxygen species in organic oxidation, demonstrating efficiency over five consecutive trials. Additionally, G-CeO2 NPs exhibit potent antibacterial activity against both gram-positive and gram-negative bacteria. This study presents an innovative, and efficient approach to environmental remediation, shedding light on the potential of G-CeO2 NPs in addressing environmental pollution challenges.


Assuntos
Cério , Nanopartículas , Solanum tuberosum , Antibacterianos/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Nanopartículas/química , Cério/farmacologia , Cério/química
9.
J Trace Elem Med Biol ; 83: 127371, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38176319

RESUMO

INTRODUCTION: Releasing of cerium oxide nanoparticles (nano-CeO2) to the nature has increased due to the widespread use in many fields ranging from cosmetics to the food industry. Therefore, nano-CeO2 has been included in the Organization for Economic Co-operation and Development's (OECD) priority list for engineering nanomaterials. In this study, the effects of nano-CeO2 on the freshwater mussels were investigated to reveal the impact on the freshwater systems on model organism. METHODS: First, the chemical and structural properties of nano-CeO2 were characterized in details. Second, the freshwater mussels were exposed to environmentally relevant concentrations of nano-CeO2 as 10 mg, 25 mg and 50 mg/L during 48-h and 7-d. Third, after the exposure periods, hemolymph and tissue samples were taken to analyse the Total Hemocyte Counts (THCs) histology and oxidative stress parameters (total antioxidant status, glutathione, glutathione-S-transferase, and advanced oxidative protein products). RESULTS: Significant decrease of the THCs was observed in the nano-CeO2 exposed mussels compared to the control group (P < 0.05). The histological results showed a positive association between nano-CeO2 exposure concentration in the water and level of tissue damage and histopathological alterations were detected in the gill and the digestive gland tissues. Oxidative stress parameters were slightly affected after exposure to nano-CeO2 (P > 0.05). In conclusion, this study showed that acute exposure of freshwater mussels to nano-CeO2 did not pose significant biological risk. However, it has been proven that mussels are able to accumulate nano-CeO2 significantly in their bodies. CONCLUSION: This suggests that nano-CeO2 may be a potential risk to other organisms in the ecosystem through trophic transfer in the food-web based on their habitat and niche in the ecosystem.


Assuntos
Bivalves , Cério , Nanopartículas , Unio , Animais , Unio/metabolismo , Ecossistema , Nanopartículas/toxicidade , Nanopartículas/química , Cério/toxicidade , Cério/química , Estresse Oxidativo , Água Doce/química , Glutationa/metabolismo
10.
J Hazard Mater ; 465: 133433, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38185086

RESUMO

Biofilms adhering to different surfaces have significant negative impacts in various fields. Cerium oxide nanoparticles can serve as mimics of haloperoxidase for biological biofilm inhibition applications. The regulation of the exposed facet of CeO2 nanoparticles influences their efficiency in various catalytic processes. However, there is still a lack of systematic studies on the facet-dependent haloperoxidase-like activity of CeO2. In the present study, the facet-dependent haloperoxidase activities and antibiofilm performance of CeO2 nanoparticles were elucidated through experiment analysis and density function theory calculation. The as-prepared CeO2 nanoparticles inhibited bacterial survival and catalyzed the oxidative bromination of quorum sensing signaling molecules, achieving biofilm inhibition performance. The antibacterial and biofilm formation suppression abilities were consistent with their haloperoxidase activities. The {111}- and {110}-facet CeO2 nanopolyhedra, as well as the {110}- and {100}-facet CeO2 nanorods, which had higher haloperoxidase activity showed better antibiofilm performance than the {100}-facet CeO2 cubes. The present findings provide a comprehensive understanding of the facet-dependent haloperoxidase-like activity of CeO2. Furthermore, engineering CeO2 morphologies with different crystal facets may represent a novel method for significantly adjusting their haloperoxidase-like activity.


Assuntos
Cério , Nanopartículas , Nanopartículas/química , Biofilmes , Percepção de Quorum , Bactérias , Cério/química
11.
Int J Biol Macromol ; 254(Pt 1): 127745, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38287590

RESUMO

Skin interstitial fluid (ISF) has been an alternative source in the field of biomarkers analysis. This work developed swellable hydrogel microneedles (MNs) composed of polyvinyl alcohol and sodium alginate by chemical crosslinking (PVA/SA). Here, PVA/SA was firstly used to fabricate hydrogel MNs, achieving a swellable ratio of 150 % and a rapid extraction of 6.4 mg ISF in 15 min. To replace expensive and non-reusable test kits, hydrogel MNs based on composite nanozyme with high oxidase-like activity were successfully developed to recover and detect biomarkers. The nanozyme was composed of MnO2-modified mixed valence cerium-metal organic frame (MCM). MCM was characterized by multiple techniques to further confirm its composition and structure. MCM combined with the reduction reaction of glutathione (GSH) with oxidized substrate to achieve a colorimetric GSH detection, which had a detection limit (LOD, 0.36 µM) of GSH. The hydrogel MNs based on MCM (MCM-MNs) were firstly applied to the rapid detection of GSH in ISF. All in all, this method combines the advantages of nanozyme and hydrogel MNs to achieve a timely and minimally invasive analysis, which provides a new dimension for the in vivo detection of GSH by skin ISF and holds great implications in biomedical and bioanalysis fields.


Assuntos
Cério , Cério/química , Hidrogéis , Compostos de Manganês , Óxidos , Biomarcadores
12.
Biomaterials ; 305: 122466, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38184960

RESUMO

Inflammation is associated with a series of diseases like cancer, cardiovascular disease and infection, and phosphorylation/dephosphorylation modification of proteins are important in inflammation regulation. Here we designed and synthesized a novel Brazilin-Ce nanoparticle (BX-Ce NPs) using Brazilin, which has been used for anti-inflammation in cardiovascular diseases but with narrow therapeutic window, and Cerium (IV), a lanthanide which has the general activity in catalyzing the hydrolysis of phosphoester bonds, to conferring de/anti-phosphorylation of IKKß. We found that BX-Ce NPs specifically bound to Asn225 and Lys428 of IKKß and inhibited its phosphorylation at Ser181, contributing to appreciably anti-inflammatory effect in cellulo (IC50 = 2.5 µM). In vivo mouse models of myocardial infarction and sepsis also showed that the BX-Ce NPs significantly ameliorated myocardial injury and improved survival in mice with experimental sepsis through downregulating phosphorylation of IKKß. These findings provided insights for developing metal nanoparticles for guided ion interfere therapy, particularly synergistically target de/anti-phosphorylation as promising therapeutic agents for inflammation and related diseases.


Assuntos
Benzopiranos , Cério , Nanopartículas Metálicas , Nanopartículas , Sepse , Camundongos , Animais , Fosforilação , Quinase I-kappa B/metabolismo , Quinase I-kappa B/uso terapêutico , Inflamação/tratamento farmacológico , Nanopartículas/química , Nanopartículas Metálicas/uso terapêutico , Cério/química
13.
J Biomater Appl ; 38(7): 866-874, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38173143

RESUMO

Cerium oxide nanoparticles (CNP) have garnered significant attention due to their versatile redox properties and wound-healing applications. The antioxidative nature of CNP is due to its ability to be oxidized and reduced, followed by the capture or release of oxygen which is used for scavenging reactive oxygen species (ROS). Herein, CNP is produced through a wet chemistry approach and its tunable redox property is tested across a range of temperatures. The synthesized CNP was observed to reveal the signature peak at 245 nm indicating a high Ce+3/Ce+4 ratio. Towards evaluating the redox antioxidative behavior, CNPs were subjected to a comprehensive analysis for superoxide dismutase mimetic analysis with riboflavin-mediated nitroblue tetrazolium scavenging assay. The results demonstrated that the redox activity of cerium oxide nanoparticles was strongly influenced by the different temperature ranges. Superoxide dismutase mimetic activity was observed to be reduced with a decrease in temperature as we moved from 4°C (80% activity) to -80°C (47% activity) at 1 mM conc of CNP. Similarly, the SOD mimetic activity increased with an increase in temperature from 40°C (72% activity) to 70°C (94% activity). Further, CNP was found to inhibit E. coli (gram+ve) and Enterobacter (gram-ve) beyond 70% simultaneously at 1 mM conc, indicating its potential application as a remarkable antimicrobial agent. CNP also inhibited the alpha-amylase activity up to the 60% at 1 mM conc suggesting its potential application in antidiabetic wound healing therapy. Overall, the CNP finds its application in mitigating the oxidative stress-related disorder exhibited by its high antioxidative, antimicrobial, and antidiabetic behavior.


Assuntos
Cério , Nanopartículas , Antioxidantes/farmacologia , Antioxidantes/química , Temperatura , Escherichia coli , Nanopartículas/química , Cério/química , Superóxido Dismutase , Hipoglicemiantes , Espécies Reativas de Oxigênio
14.
Environ Sci Pollut Res Int ; 31(1): 1276-1287, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38038920

RESUMO

In this study, pure and europium-doped (2%, 4%, 6%, and 8%) cerium oxide (CeO2) nanoparticles (NPs) were employed for efficient dye removal through photocatalytic approach. XRD and TEM confirmed the formation of pure CeO2 nanoparticles, while XPS and Raman spectroscopy were used to analyze the electronic properties and lattice defects, such as oxygen vacancies. The presence of lattice defects, which increased with the concentration of Eu, was found to be responsible for the enhanced degradation of Rose Bengal dye (82.4% for 8% Eu-doped sample) in 75 min. FTIR confirmed the chemical composition of the synthesized sample. The band at 617 cm-1, corresponding to the symmetrical stretching vibration mode of (Ce-O-Ce) or (Ce-O-Eu). The magnetic properties of synthesized samples were examined using VSM, revealing an increase from 4.48 to 11.0 emu/g in magnetization. This enhancement was attributed to F-center exchange mechanism (FCE), resulting from the presence of oxygen vacancies. These findings contribute to the development of advanced materials for sustainable wastewater treatment and spintronics.


Assuntos
Cério , Nanopartículas , Európio , Nanopartículas/química , Cério/química , Fenômenos Magnéticos
15.
Environ Sci Pollut Res Int ; 31(1): 494-508, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38012482

RESUMO

Although expensive, rare-earth oxides are well known for being powerful defluoridation agents. Being costlier, cerium is used as a hybrid adsorbent in conjunction with a prudent and environmentally benign substance like biochar. The novel CeO2/BC (surface area 260.05 m2/g) composite was shaped using the facile chemical precipitation technique without any cross-linkers. Surface properties of synthesised CeO2/BC were investigated using powder XRD, FTIR, BET, pH point of zero charge and SEM. According to XRD analysis, immobilized Ce is primarily in form of CeO2, while pristine biochar is in an amorphous state. Batch mode adsorption tests were carried out with different solution pH, F- initial concentration, adsorbent dosage and contact time and counter anions. CeO2/BC can be used in a varied pH range (2-10) but shows maximum removal at pH 4. The Langmuir adsorption isotherm and a pseudo-second-order kinetic model are best fitted to support the adsorption process with a maximum Langmuir adsorption capacity of 16.14 mg/g (F- concentration 5 to 40 mg/L). The removal phenomenon is non-spontaneous in nature. The plausible mechanism of fluoride uptake was explained using XPS and pHPZC, and it was demonstrated that the fluoride was mainly removed by ion exchange and electrostatic attraction. The adsorbent could be successfully used up to fourth cycle after regenerating.


Assuntos
Cério , Carvão Vegetal , Água Potável , Saccharum , Poluentes Químicos da Água , Purificação da Água , Água Potável/química , Fluoretos/química , Celulose , Purificação da Água/métodos , Termodinâmica , Cério/química , Cinética , Adsorção , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
16.
Luminescence ; 39(1): e4591, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37675627

RESUMO

Cerium has been widely used as a dopant in luminescent materials due to its unique electronic configurations. It is generally anticipated that the luminescence properties of rare-earth-doped materials are closely related to the local environment of activators, especially for Ce3+ . In addition, it is convenient to modulate its emission wavelength by adjusting the composition and structure. In this study, we systematically analyzed the microstructure of the Ce-doped CaYAlO4 system at atomic resolution. The quantitive results indicated that the structure distortion greatly influenced the valence state of the Ce dopant, which is critical to its luminescence efficiency. In addition, valence variations also exist from surface to inner structure due to the big distortion area around the surface. Our results unravel the interplay of local structure and valence transitions in Ce-doped aluminate phosphors, which has the potential to be applied in other luminescent materials.


Assuntos
Cério , Substâncias Luminescentes , Metais Terras Raras , Luminescência , Substâncias Luminescentes/química , Metais Terras Raras/química , Cério/química
17.
Biomed Mater Eng ; 35(1): 77-85, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37424460

RESUMO

BACKGROUND: Cerium ions promote osteoclastogenesis and activate bone metabolism, while cerium oxide nanoparticles exhibit potent anti-inflammatory properties, making them promising for biomedical applications. OBJECTIVE: The purpose of this study was to develop and evaluate a synthesis method for sustained-release cerium-ion bioceramics containing apatite. Substituted apatite was found to be an effective biomaterial. METHODS: Cerium-containing chlorapatite was synthesized using a mechanochemical method employing dicalcium phosphate, cerium chloride heptahydrate, and calcium hydroxide as raw materials. The synthesized samples were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Raman spectroscopy. RESULTS: Cerium chlorapatite was successfully synthesized in the 10.1% and 20.1% samples. However, at Ce concentrations higher than 30.2%, the samples consisted of three or more phases, indicating the instability of a single phase. CONCLUSION: The method used in this study was found to be more efficient and cost-effective than the precipitation method for producing substituted apatite and calcium phosphate-based biomaterials. This research contributes to the development of sustained-release cerium-ion bioceramics with potential applications in the field of biomedicine.


Assuntos
Hidróxido de Cálcio , Cério , Cloretos , Preparações de Ação Retardada , Fosfatos de Cálcio/química , Apatitas/química , Materiais Biocompatíveis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Cério/química , Difração de Raios X
18.
Environ Res ; 246: 118001, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145730

RESUMO

In recent years, extensive research endeavors are being undertaken for synthesis of an efficient, economic and eco-friendly cerium oxide nanoparticles (CeO2 NPs) using plant extract mediated greener approach. A number of medicinal plants and their specific parts (flowers, bark, seeds, fruits, seeds and leaves) have been found to be capable of synthesizing CeO2 NPs. The specific key phytochemical constituents of plants such as alkaloids, terpenoids, phenolic acids, flavones and tannins can play significant role as a reducing, stabilizing and capping agents in the synthesis of CeO2 NPs from their respective precursor solution of metal ions. The CeO2 NPs are frequently using in diverse fields of science and technology including photocatalytic degradation of dyes, antibiotics as well as antimicrobial applications. In this review, the mechanism behind the green synthesis CeO2 NPs using plant entities are summarized along with discussion of analytical results from characterization techniques. An overview of CeO2 NPs for water remediation application via photocatalytic degradation of dyes and antibiotics are discussed. In addition, the mechanisms of antimicrobial efficacy of CeO2 NPs and current challenges for their sustainable application at large scale in real environmental conditions are discussed.


Assuntos
Anti-Infecciosos , Cério , Nanopartículas Metálicas , Nanopartículas , Antibacterianos/química , Corantes , Nanopartículas/química , Cério/química , Plantas , Nanopartículas Metálicas/química
19.
J Mater Chem B ; 12(3): 609-636, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38126443

RESUMO

Cerium vanadate nanoparticles (CeVO4 NPs), which are members of the rare earth orthovanadate nanomaterial family, have generated considerable interest due to their diverse properties and prospective biomedical applications. The current study, which provides a comprehensive overview of the synthesis and characterization techniques for CeVO4 NPs, emphasizes the sonochemical method as an efficient and straightforward technique for producing CeVO4 NPs with tunable size and shape. This paper investigates the toxicity and biocompatibility of CeVO4 NPs, as well as their antioxidant and catalytic properties, which allow them to modify the redox state of biological systems and degrade organic pollutants. In addition, the most recent developments in the medicinal applications of CeVO4 NPs, such as cancer treatment, antibacterial activity, biosensing, and drug or gene delivery, are emphasized. In addition, the disadvantages of CeVO4 NPs, such as stability, aggregation, biodistribution, and biodegradation, are outlined, and several potential solutions are suggested. The research concludes with data and recommendations for developing and enhancing CeVO4 NPs in the biomedical industry.


Assuntos
Cério , Nanopartículas , Vanadatos/farmacologia , Vanadatos/química , Cério/farmacologia , Cério/química , Distribuição Tecidual , Estudos Prospectivos , Nanopartículas/química
20.
J Trace Elem Med Biol ; 81: 127323, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37890446

RESUMO

Lanthanides are a group of 15 elements (8 heavy and 7 light) grouped for their proximity in the chemical and physical properties. Recently, this group of elements has received great attention because of their importance, and their entrance into many industrial technologies making the probability of the living organisms' exposure to it increase. The present study aims to study ability of cerium nanoparticles (CeNPs) or lanthanum (LaCl3) to cross the blood brain barrier also, investigate their neuro effect separately or together on some parameters in six brain areas (cortex, cerebellum, hippocampus, striatum, midbrain, and hypothalamus) of the adult male albino rats. The results showed the ability of both elements to distribute and accumulate in the different brain areas. Also, the results of CeNPs or LaCl3 treatment were in the same line where each element caused a significant decrease in norepinephrine (NE), dopamine (DA), serotonin (5-HT) and GABA accompanied with a significant increase in 5- hydroxyl indoleacetic acid (5-HIAA) glucose level. On the other hand, GSH and MDA showed a significant decrease after CeNPs treatment while, with LaCl3 treatment, MDA showed a significant increase in the different brain areas after 3 weeks of treatment. The coadministration of CeNPs and La Cl3 caused an ameliorating effect in all the tested parameters. In conclusion, from the previous studies the effects of lanthanides in the present study may be in part due to its effect on the release or turnover of neurotransmitters and insulin secretion. Finally, the ameliorative effect of CeNPs may be regarded as its high activity to scavenge the free radicals.


Assuntos
Cério , Nanopartículas , Ratos , Animais , Masculino , Cério/farmacologia , Cério/química , Encéfalo , Dopamina/farmacologia , Barreira Hematoencefálica , Norepinefrina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...